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ABSTRACT B
The prism machine is a stack of n cellular arrays, each of

size 2nx2 n . Cell (iUj) on level k is connected to cells (i,j),
(i+2Kj), and (i,j+2K) on level k+l, l-k<n, where the sums are
modulo 2n . Such a machine can perform various operations (e.g.,
"Gaussian" convolutions or least-squares polynomial fits) on
image neighborhoods of p-.wer-of-2 sizes in every position in O(n)
time, unlike a pyramid machine which can do this only in sampled
positions. It can also computR the discrete Fourier transform in
O(n) time. It consists of n.4 cells, while a pyramid consists of
fewer than 4n+1/ 3 cells; but in practice n would be at most 10,
so that a prismn would be at most about seven times as large as a
pyramid.
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1. Introduction

There has been considerable recent interest in a class of

cellular computers known as "pyramids", which seem to be well

suited for many types of image processing and analysis tasks.

Pyramid architectures are especially appropriate when one wants

to represent image information at a number of different scales.

Two recent collections of papers on such multiscale approaches

are [1] and [2].

Basically, a pyramid is a stack of cellular arrays that

taper exponentially in size. For example, if the base of the

pyramid is 2nx2n, then the successively higher levels might be

2n-lx2n-i 2n-2x2n-2 ..., 2x2, lxl. Note that the total number

of cells in such a pyramid is 4n(l+!+-l+...)<4 n+/3, i.e., less4 16

than a third more cells than in the base alone. Each cell is con-

nected to its neighbors on its own level, and also to a bounded

number of cells on the levels above and below; for example, cell

(i,j) on level k might be connected to a "father" cell (Li 1) on2'2

level k+l, which implies that it is also connected to the "son"

cells (2i,2j),(2i+l,2j),(2i,2j+l), and (2i+i,2j+l) on level k-1.

Pyramids can perform many types of operations on a 2nx2 n image

in O(n) time. For example, the histogram of the image can be com-

puted in O(n) time by having each cell obtain counts of values from

its sons and add them. Weighted averages of various types (e.g.,

having approximately Gaussian weights), with kernels of sizes OR2
k

can be computed in positions spaced 0 (2k) apart by iterating small

weighted-average computations in a pyramid (3]. Least-squares poly-

nomial fits to (nonoverlapping) image blocks of sizes 2k x2k can be

- - s- .... '
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computed iteratively from the fits to blocks of sizes 2k-l x2 k-i

[4]. Polynomial fits to edges or curves in an image can also be

computed iteratively [5].

This paper proposes an alternative to the pyramid which we

call the "prism". A prism is a stack of cellular arrays, all of

the same size. The height of the stack is the same as in the

case of a pyramid; for example, if the base is 2n x2 n , the number

nof levels is n, so that the total number of cells is n-4. (Note

that in practice n would be at most 10, so that a prism with

base 1024x1024 would have only about 7 times as many cells (10 Z

7A4 ) as a pyramid with the same base size.) Each cell is connected

to its neighbors on its own level, and also to three cells on the

level above; specifically, cell (i,j) on level k is connected to

cells (i,j),(i+2k j), and (i,j+2 k ) on level k+l (which implies that

it is also connected to cells (i,j),(i-2k-l,j), and (i,j- 2k- l) on

level k-l). In these connections, it is understood that addition

n ek. if k knis modulo 2 e.g., if i+2 >2n, it means i+2 -2
n . We number the

levels 1,...,n, starting at the base. We will regard (i,j) as

Cartesian coordinates.

We shall show that a prism can perform many of the same types

of operations as a pyramid machine in 0(n) time, but can perform them

at every position in the image rather than at positions spaced 2k

apart. We shall also show that it can compute the discrete Fourier

transform of a 2n by 2n image in O(n) time. On the other hand a

prism does not represent the information in an image at a reduced

scale; it can condense the information into a small number of cells,



but these cells are spaced far apart.Thstcantimle

a pyramid in detecting basic region shapes such as blobs and rib-

bons using local operations, though it may be able to detect these

shapes in other ways.
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2. Condensation of information

In this section we describe how a prism machine can compute

many useful types of information about the 2k x2k blocks of pixels

in an image, for k1l,...,n and for blocks in every possible posi-

tion, in time 0(n).

2.1. Histogramming

As a first and very simple example, suppose we want to count

how many times a given gray level z occurs in each block. (Doing

this for each z gives us the gray level histogram of the block.)

At the bottom level of the prism, we trivially have this count for

the lxl blocks: the count is 1 if the given pixel has value z, and

0 otherwise. Working within the bottom level, we add the count of

each pixel's left neighbor to its own count; this yields, at each

pixel (i,j), the count for the ix2 block of pixels (i-l,j),(i,j)).

We now add this count for each pixel's lower neighbor to its own

count; this yields, at each (i,j), the count for the 2x2 block of

pixels {(i-l,j),(i,j),(i-l,j-l),(i,j-l)}.

Next, for every (i,j), we pass the counts from pixels (i-2,j)

and (i,j) on the first level up to pixel (ij) on the second level

and add them. This means that each pixel (i,j) on the second

level now has the count for a 2x4 block of original pixels. We pass

this information back down to pixel (i,J) onthe first level. Now,

for every (i,j), we pass these counts from pixels (i,j-2) and (i,j)

on the first level up to pixel (i,j) on the second level and add

them. Each pixel (i,J) on the second level now has the count for

a 4x4 block of original pixels - namely, the 4x4 block with (i,j)

in its upper right corner.

.A A. % V.



We now perform an analogous process between levels 2 and 3.

The 4x4 block counts from pixels (i-4,j) and (i,j) on level 2 are

passed up to pixel (i,j) on level 3 and added, giving it the count

for a 4x8 block. The results are passed back down to level 2,

and these 4x8 block counts at pixels (i,j-4) and (i,j) are then

passed back up to pixel (i,j) on level 3 and added, giving it the

count for an 8x8 block. Continuing in this way, we obtain counts

for 2 by 2 blocks on level k, k=l,2,... Note that the positions

of all blocks are defined modulo 2n; thus on level n, every pixel

obtains the count for a 2nx2n block - i.e., for the entire image.

The entire counting process takes two steps (of shifting and

adding counts) within the bottom level, plus three steps (adding,

passing back down, and adding again) between each successive pair

of levels, yielding as the total number of steps 3n-l=O(n). We could

reduce the number of steps to 2n if we doubled the height of the

stack, and connected pixel (i,j) on level 2k-1 to pixel (i+2 k,j) on

level 2k, and pixel (i,j) on level 2k to pixel (i,j+2 k ) on level

2k+l, for k-1,2,...,n; this requires a stack of 2n+1 levels, but

it reduces the number of connections between levels, and in the

counting algorithm it eliminates the need to pass information back

down. Note also that our algorithm does not use any within-level

connections except at level 1. We could eliminate even the level-1

connections if we added a level 0, where pixel (i,j) on level 0 is

connected to pixels (i,j),(i+2 ,j)-(i+l,j), and (i,j+20)=(i,j+l) on

level 1. However, the within-level connections are useful in per-

forming local operations on the image (though we could simulate them

by passing information up and down, if desired, at the cost of a

constant factor in computation time).

. WNW " . , , , ' -,,,. .



2.2. Other blockwise operations

The method used to compute block counts can be trivially modi-

fied to compute block sums, maxima, etc. Level k obtains sums

(etc.) for pairs of blocks of size 2 k-lx2 k- from level k-i, adds

them to obtain results for blocks of size 2k-i 2k , passes the re-

sults back down and again adds pairs of them to obtain results for

k kblocks of size 2 x2

Computing iterated convolutions (i.e., weighted sums) is slight-

ly more complicated, since in general different weights must be ap-

plied to the pixels in a block. The simplest way to perform a 2x2

convolution is for each cell to obtain its left neighbor's value and

then pass both values (its own and the neighbor's) to its upper

neighbor; this gives each cell the quadruple of values in the 2x2

block, and it can now compute their weighted sum. To iterate the

convolution, each cell (i,j) on level 2 receives a pair of values

from cells (i-2,j) and (i,j) on level 1, passes them back down to

level 1, and then receives two pairs of values from cells (i,j-2)

and (i,j) on level 1; each of these four values represents the

weighted sum of a 2x2 block. The cell can then compute the weighted

sum of these four values, thus iterating the convolution; and so on

at higher levels. To perform an iterated 4x4 convolution, each

cell (i,j) on level 1 collects all the values in the 2x2 block

without combining them, and each cell (i,j) on level 2 then collects

these 4-tuples of values, thus giving it all the values in a 4x4

block; it then computes the weighted sum of these 16 values. The

process is then iterated by passing data up two more levels before

combining it; and so on. Modifications of this procedure can be used



to compute iterated convolutions of sizes other than powers of

2; the details are left to the reader. The approximately Gaussian

convolutions of Burt [3] can be obtained in this way using, e.g.,

iterated 4x4 convolutions; note that the prism machine yields the

convolution values in every position, not just in sampled positions.

Burt [4] has shown that if we know the coefficients and error of

the (least-squares) best-fitting polynomials of degree d to four con-

tiguous 2 k-lx2 k- image blocks, we can directly compute the coeffi-

cients and error of the best-fitting polynomial of degree d to their

union (a 2kx2k block). His method can be implemented in a prism

machine, by passing the information from the four subblocks to the

level above, where the fit to the entire block is computed; note

that this yields fits to 2kx2k blocks in every position.

Other recent work on pyramid algorithms (e.g., Shneier (5]) in-

volves fitting straight lines or other arcs to the edges or curves

in each block of an image, and recursively combining these fits for

groups of blocks whenever such combinations are possible. This

too can be done in a prism machine by passing data fromthe subblocks

to the level above; thus it too can be done for blocks in every

position.

.. ...... . ... - ,*, %,W ,i-h-A



2.3. Representations at reduced scales

As we have just seen, a prism can carry out many of the same

computations as a pyramid; but it cannot simulate a pyramid in

every respect. In particular, it cannot represent information about

an image at a reduced scale. When we use a prism to compute descrip-

tions of 2kx2k blocks of an image, the descriptions of adjacent

blocks are located 2k apart on level k of the prism, whereas when

we use a pyramid the descriptions of adjacent blocks are adjacent

to one another. This adjacency may be advantageous; for example,

we can use a pyramid to obtain condensed representations of the

edges in an image, and we can then detect blob-like regions of

arbitrary size in the image by discovering pixels (at appropriate

levels of the pyramid) that are locally surrounded by edges [5].

With a prism, we would have to detect such regions by going to a

higher level and looking for blocks in which the edge representa-

tions form a closed border, and this may be harder to do (the

larger blocks will generally contain more edge information, and

it may be harder to detect the desired combinations). Similar

remarks apply to the detection of "ribbons" of arbitrary width

in an image.



3. The discrete Fourier transform

Another advantage of a prism over a pyramid is that the prism

can compute the discrete Fourier transform (DFT) of a 2n x2 n input

image in O(n) time. In this section we illustrate how this com-

putation is carried out. We first show how to compute the one-

dimensional DFT of a string of length 2n in O(n) time on a one-

dimensional "prism", consisting of n one-dimensional cellular

arrays of length 2n each, and where cell i on level k is joined

to cells i and i+2k (modulo 2 n ) on level k+l.

We recall that the DFT of a string zOzl,...,ZN-1 of length N

is defined by

N-1 zE 2 ri r s / N E N-1 zsErS, where Ee 2 1 i / N

wr z s
S=0 S=0

To see how these sums can be computed recursively, consider the case

where N=8, and define the intermediate sequences y0 ,...,y 7 and

x 7 as shown in the first two columns below. It is then easily

verified that the w's are as shown in the third column.

000YO = z0+E z4  x = Y0+E y2 w0 = x0+E0X1

= zl+E 0z5  X = Yl+E 0  w = x 1+Elx
zl 1 51Y 4 2

Y2 = z2+EOz6 x2 = E4y 2+Y0  w2 = x2+E2x 3

Y3 = z3+E'z4 x3 = E4y 3+l w3 = x6+E3x 7

Y4 = E4z4+z0 x4 = Y4+E2y 6  w4 = E4x1 +x0

E4z5+z x5  Y5 +E2y7  w5 = E5x5+x

Y6 = E4z6+z2 x6 
= E6y6+Y 4  w6 = E6x3+x 2

Y7 = E4z 7+z3 x7 = E6y7+Y 5 w7 = E7x7+x 6



(This is a standard DFT algorithm.) We can compute these

sequences in a three-level stack (of strings of length 8) as

follows: Input the z's into level 3. Using the distance-

4 connections between level 3 and level 2, compute the y's on

level 2. (Each of the weighted sums can be computed in a single

step, because the distance-4 connections are modulo 8.) Simi-

larly, using the distance-2 connections between level 2 and level

1, compute the x's on level 1. (Here x0 xl1,x4, and x5 can be

computed in one step; but to get x2 , we must pass y0 down to

position 0 on level 1, pass it back up to position 2 on level 2

and combine it with Y2, and finally pass the result down

to position 2 on level 1, and similarly for x3 ,x6, and

x7. We could eliminate the extra steps by connecting cell i on

level k to cells i and i±2k on level k+l.) Finally, by exchanging

information between pairs of neighbors (0 and 1, 2 and 3,4 and 5,

6 and 7), compute the w's on level 1. Note that w01w2 ,w5, and w7

end up in the right positions, but wlw 3 ,w4 and w6 end up in posi-

tions 4,6,1, and 3, respectively. We can switch them into the

right positions by passing them back up through the stack. For

example, we can move w1 and w3 from positions 4 and 6 on level 1

to positions 6 and 0 (=8 modulo 8) on level 2, then to positions

2 (=10 modulo 8) and 4 on level 3, and finally shift then one posi-

tion to the left so they end up in positions 1 and 3. Similarly,

we can move w4 and w6 from positions 1 and 3 on level 1 to positions

3 and 5 on level 2, then move them vertically upward to level 3 and

shift them one position to the right so they end up in positions 4



and 6. At the same time, we can shift w0 ,w 2 ,w5 and w7 verti-

cally upward to the same positions on level 3. This example

generalizes readily to a string of length N=2 The number of

computational steps required is evidently O(n).

To compute a two-dimensional DFT, we first use the process

just described to compute the one-dimensional DFT of each row;

note that it ends up where it began, in the top level. We now

apply an exactly analogous process to this new input to compute

the one-dimensional DFT of each column. (The row-wise computa-

tion used the connections between (i,j) on level k and (i+2k ,j) on

level k+l; the columnwise computation uses the connections between

(i,j) and (i,j+2 k).) The final result is just the DFT of the input

image. Note that by filtering this DFT (i.e., multiplying each

w value by some given weight) and then performing the inverse DFT,

we can modify the original image in a variety of ways.
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4. Prisms and hypercubes

In this section we briefly discuss the relationship between

a prism and a hypercube of dimension 2n. For simplicity, we first

show how a one-dimensional "prism," consisting of a stack of n

one-dimensional cellular arrays of length 2n each, is related to

a hypercube of dimension n.

Imagine that we have an n-dimensional hypercube with one ver-

tex located at the origin (i.e., at coordinates (0,...,0)) and with

edges parallel to the axes. Thus the coordinates of any vertex

are of the form (6l'*''' 6n)' where each 6i is 0 or 1. Moreover,

each vertex is joined by edges to exactly n vertices (61,62,...,

6 n ) , (6_2,...,6 n ), ... ,It (61 ,6 2 ,...J ,where 6=1 if 61=0 and

vice versa.

Now imagine that we have a string of cells of lengths 2n in

which each cell i (i=Ol... ,2n) is joined by an arc to the 2n

n-l n
cells i±l,±2,i±4,...,i±2 . (Here addition is modulo 2 , i.e.,

if i+2 k>2 n , it becomes i+2 k_2 n, and if i-2 k<0, it becomes i-2 k+-n.)

Since 0 -<i<2n, i is an n-bit binary number, call it 
6l*** 8n If

we identify i with the hypercube vertex (61'' 6 n ) , we see that

the cells to which i is joined by arcs include all of the hyper-

cube vertices to which (6 1'''' 6n) is joined by edges.

Finally, note that in a one-dimensional "prism", cell i on

level k is joined to cells i and i+2k on level k+l (so that cell i

on level k+l is joined to cells i and i-2k on level k). In other

words, the 2n connections to cells i±l,i±2,i±4,...,i±2n have been

divided among the n levels.

. ,~~~~~~IN-!,.. T,.- - f ...,~ o



This discussion generalizes straightforwardly to a two-

dimensional prism and a hypercube of dimension 2n. In this

hypercube, each vertex has coordinates (61f...,c62n), where each

6 i is 0 or 1. Thus we can identify each vertex with a cell

(i,j) in a 2n×2n array, where the binary number representation

of i is 61... 6n and that of j is 6n+l** 62n' We can obtain all

the connections between hypercube vertices if we join each cell

(i,j) by an arc to the 4n cells (i±l,j),(i±2,j),(i±4,j) ... ,(i±2 n -1

j),(i,j±l),(i,j±2),(i,j±4),...,(i,j±2 n - ). In a prism, we have

divided these 4n connections among the n levels.

The prism machine algorithms described in this paper could

be easily modified to run on a 2n-dimensional hypercube, which

would require only 4n cells rather than n-4n. However, in the

hypercube each cell would have 2n neighbors, rather than 10 neigh-

bors (4 on its own level, 3 on the level above, 3 on the level be-

low) as in the prism. In particular, the between-level connections

in the prism should be easier to implement than the connections

in the hypercube.



5. Concluding remarks

We have defined a prism machine as a stack of n cellular

arrays, each of size 2n x2n , with cell (i,j) on level k connected

to cells (i,j),(i+2 ,j), and (i,j+2 k ) (modulo 2 n ) on level k+l.

We have shown that such a machine can perform many useful types of

operations on a 2nx2n image in O(n) time. These include histo-

gramming; the discrete Fourier transform; and various types of con-

volution and polynomial fitting operations having kernels of sizes

2k,k=l,2,...,n. These latter operations are performed in every

kposition, rather than in positions spaced 2 apart as in the case

of a pyramid.*

The connections in a prism resemble those in a hypercube, ex-

cept that we allow only connections in two "directions" at a time.

The prism requires n times as many cells as a hypercube, but each

cell has only a bounded number of neighbors instead of the O(n)

neighbors in a hypercube. We shall show elsewhere that the between-

level connections in a prism have a simple optical implementation.

The prism requires more cells than a hypercube or pyramid, but

in practical cases the increase would be less than an order of mag-

nitude. On the other hand, the prism has a very simple intercon-

nection structure in which each cell has only a small number of neigh-

bors, and in particular there are only three connections (per cell) be-

tween levels. Thus the prism deserves serious consideration as a

possible architecture for image processing and analysis.

*It should be pointed out that pyramids can be defined to taper at
arbitrary rates and to allow arbitrary degrees of overlap between
the "sons" of neighboring nodes (3]. However, in all of these pyra-
mid models the connections between each consecutive pair of levels
are the same, whereas in our prism model the connections become
increasingly spread out at high levels.
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